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Monte Carlo simulations are used to calculate Wilson loops for pure U(4) and SU(4) gauge 
theories on a 64 lattice. The first-order phase transitions previously observed in the average action 
per plaquette for U(4) and SU(4) is also seen in the string tension. U(4) and SU(4) color seem 
to be confined while U(1) charge in U(4) appears to be deconfined. 

In previous studies, we examined pure U(4) [1] and SU(4) [2] lattice gauge 
theories in four space- t ime dimensions. Since first-order phase transitions were 

found in both of these theories, it seems reasonable that these theories should be 
studied together so that they can be compared and contrasted. To make a more 
detailed exploration of the phase transitions in these theories, we study the string 
tensions, via the Wilson loops, for these gauge groups. The decoupling of the SU(4) 
and U(1) components  of the U(4) gauge group, in the low-temperature  region, 
should be observed so that U(4) and SU(4) gauge theories should merely be shifted 

in the inverse temperature.  Both U(4) and SU(4) color should be confined while 
the U(1) charges of U(4) gauge theory should be deconfined. Similar behavior  has 
recently been observed for the gauge groups U(2) [3], SU(2) [4], U(3) [5] and 
SU(3) [6]. 

The partition function for the U(N)  and SU(N) non-abelian gauge theories on 
a four-dimensional euclidean lattice is defined by 

Z ( f l ) =  I ( ~  d U a ( r ) ) e x p ( - f l S [ U ] ) ,  

where U;,(r) is an N x N  matrix of the U(N)  or SU(N)  gauge groups attached to 
a given link of the lattice identified by the indices r and/2  which label the lattice 
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sites and the unit vectors in the four euclidean directions, respectively. The inverse 
temperature/3  is defined by/3 = 2 N / g  2 where go is the bare coupling constant and 
the measure in the above integral is the invariant Haar  measure for the relevant 
gauge group under consideration. The Wilson action [7] S is defined as a sum over 
the individual plaquette actions by 

S[U ]=  ~ .S~= ~ ( 1 - 1 R e  Tr (Ur.aUr+;~,~Ur+;,+~,-;~Ur+~.-~)) , 
[] r,~ > ~, 

where the trace is analogous to the curl of the continuum theory gauge field A~ 
where 

Ur.a -- exp (igoA~T~) , 

where T ~ are U(N)  or SU(N) generators. Periodic boundary conditions are used 
throughout our calculations and the method of Metropolis et al. [8, 9] was used 
to equilibrate our lattice. A more detailed description of our calculational techniques 
can be found in ref. [10]. We now examine the particular cases of N = 4, i.e. U(4) 
and SU(4). 

The expectation value 

W(I, J )  = ~(Re Tr  Uc) ,  

where C is a rectangular loop of length I and width J and Uc is the product of 
link variables around the contour C, defines the Wilson loop [7]. The leading-order 
high-temperature expansion for the U(4) and SU(4) Wilson loops is 

W (I, J) = (s~fl + O(f12) ) ts , (1) 

and the leading-order, low-temperature expansions for the average action per 
plaquette for U(4) and SU(4) are 

(E) = 1 -  W(1, 1)= ~ + O ( / 3 - 2 ) ,  (2) 

15 2 
(E) = 1 - W(1, 1)= ~-~+ O ( 3 -  ) ,  (3) 

respectively. 
For large Wilson loops, we expect the behavior 

W - exp ( - A  - K • a r e a -  C • per imeter) ,  

where the coefficients A, K and C are constants for a given value of the inverse 
temperature  8. When this behavior applies, we extract the string tension K from 
the logarithmic ratio 

W ( I ,  J )  W ( I  - 1, J - 1) 
x (I, J )  = - In  

W(L J - 1 ) W ( / -  1, J ) "  
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The leading-order high-temperature expansion for the string tension for the U(4) 
and SU(4) gauge groups is given by 

X (L J) = - In  (3~/3) + 0(/3 2). (4) 

The U(1) component of U(4) is obtained by calculating the determinant [11] for 
each Wilson loop considered as a 4 x 4 matrix in U(4) and then taking the average 
over all Wilson loops in the lattice to give the mean indicated by 

I~(L J) = (det (Uc)). 

From these quantities we form the new logarithmic ratio 

ff ' (L j ) ~ ( I -  1, J - 1) 
)?(/, J) = -In I~'(/, J - 1) ff '(I - 1, J)" 

The leading-order high-temperature expansion for the average determinants for 
U(4) is 

~ / ( Z  ' f )  = [98~130-8/3 4 -t- O(/36)]  IJ , (5) 

while for the quantity ,~(L J) is 

~?(L J) = - I n  ( ~ / 3 4 )  "l- O ( / 3 6 )  . (6) 

Of course, for SU(4) the determinant of the 4 x 4 matrices is identically equal to one. 
To obtain our results, we first performed 100 iterations through the lattice with 

20 Monte Carlo upgrades per link. Outside a small region in the vicinity of the 
first-order phase transition, this equilibrated our lattice. We then averaged over 
the next 50 iterations through the lattice. For these calculations, we used the 
CRAY-1S with the algorithm described in ref. [10]. In the vicinity of the phase 
transitions, we performed 200 iterations through the lattice with 20 Monte Carlo 
updates per link which equilibrated the lattice. We then performed an average over 
the next 100 iterations through the lattice. This part of the calculation was performed 
on the CDC CYBER 205 using the red-black vector algorithm, described in ref. 
[12]. 

For U(4), we used disordered starts for 13 ~< 11, mixed phase starts [13] for 
11.0</3 ~< 13.0 and ordered starts for 13.0</3 ~< 25.0. For the mixed phase starts, 
the fourth axis of the euclidean lattice, the time axis, was divided in two with the 
upper half of the link variables disordered and the lower half ordered. The runs 
for 11.9 ~</3 ~ 13.0 corresponded to the 300 iterations through the lattice while all 
others corresponded to the 150 iterations through the lattice. For SU(4), we used 
disordered starts for/3 ~<9.0, mixed phase starts for 9.0</3 ~< 12.0 and ordered 
starts for 12.0</3 ~<25.0. The runs for 10.0~</3 ~<11.0 corresponded to the 300 
iterations through the lattice. All other calculations corresponded to 150 iterations 
through the lattice. We checked our calculation by carrying out for each and every 
value of/3, 800 iterations through the lattice, with an average over the last 300 
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Fig. 1. The average action per plaquette (E) for pure U(4) gauge theory on a 6 ¢ lattice as a function 
of the inverse temperature /3. The curves represent the leading-order high- and low-temperature 

expansions of eqs. (1) and (2), respectively. 

iterations, for only the average action per plaquette. By this means, we located the 
transition inverse temperature for SU(4) at/~c = 10.205 + 0.010. 

We show the average action per plaquette (E) for pure U(4) gauge theory as a 
function of the inverse temperature/~ on a 6 4 lattice in fig. 1. The leading-order 
high- and low-temperature expansions of eqs. (1) and (2), respectively, are also 
shown. Some mixed phase runs for the average action per plaquette in the vicinity 
of the transition inverse temperature are shown in fig. 2. The first-order phase 
transition is clearly visible at the inverse temperature of tic = 12.2+0.2. In fig. 3 
we present the Wilson loops of size up to 3 × 3 along with the leading-order 
high-temperature expansion of eq. (1) which provides a good description of the 
Monte Carlo data. 

The quantity )¢(I, J),  for (L J)  = (1, 1), (2, 2), (3, 2) and (3, 3), as a function of the 
inverse temperature/~, is shown in fig. 4a. The leading-order high-temperature 
expansion of eq. (4) is also presented in fig. 4a and agrees well with the Monte 
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Fig. 3. The Wilson loops W(I, J) for pure U(4) gauge theory on a 6 4 lattice as a function of the inverse 
temperature ~. The full upward triangles represent (L J) = (1, 1), the full circles represent (2, 1), the 
crosses represent (2, 2), the full downward triangles represent (3, 2) and the full squares represent (3, 3). 

The curves represent the leading-order high-temperature expansion of eq. (1). 

Carlo data for /3 <9 .0 .  An expanded view of the Monte  Carlo data near the 
transition inverse tempera ture  is shown in fig. 4b. The discontinuous nature of the 
transition appears  enhanced in the larger loop ratios. 

At low tempera ture  the U(1) and SU(4) parts of our U(4) matrices should 
decouple and we are effectively left with an SU(4) theory, The logarithmic ratios 
for both U(4) and SU(4) are shown in fig. 5. The weak-coupling U(4) results imitate 
the SU(4) results with the U(4) results simply shifted by approximately 2 units in ~. 

We show the average U(1) action per plaquette ( E ) =  1 -  if '(1, 1) as a function 
of the inverse tempera ture /~  on a 64 lattice, in fig. 6. Also presented in fig. 6 is 
the leading-order high-temperature expansion of eq. (5). Some mixed phase starting 
runs for (E) near the transition inverse tempera ture  are shown in fig. 7. From 
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Fig. 4. The logarithmic ratio X(/, J') for pure U(4)  gauge theory on a 6 4 lattice as a function of the 
inverse temperature/3. The full upward triangles represent (/, J)  = (1, 1), the full circles represent (2, 2), 
the crosses represent (3, 2) and the open circles represent (3, 3). Also  shown in the diagram is the 

leading-order high-temperature expansion of eq. (4). 

these diagrams, the phase transition would appear to be of first order which is in 
contrast with the second-order phase transition previously found in pure U(1) g a u g e  

theory [14]. In fig. 8 we show the results for the U(1) Wilson loops ff '(L J )  of size 
up to 3 × 3 along with eq. (5) for comparison. 
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/3. The curve represents the leading-order high-temperature expansion of eq. (5). 
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Fig. 7. The evolution of the average U(1) action per plaquette (/~) on a 64 lattice as a function of the 
number of iterations through the lattice for mixed phase starting lattices for various values of the inverse 

temperature B. 

The string tension ~(L J),  for (L J )  = (1, 1), (2, 2), (3, 2) and (3, 3), as a function 
of the inverse temperature B, is shown in fig. 9. The leading-order high-temperature 
expansion of eq. (5) is also indicated in fig. 9. If we compare the results of fig. 9 
with those of fig. 4, we can see that in the low-temperature region the quantities 
~?(L J') decrease more rapidly with increasing rectangular dimensions I and J than 
is the case for the quantities x(L J). The data in the weak-coupling region are 
consistent with the area term in the quantity ~?(/, J )  going to zero as the Wilson 
loop size goes to infinity. In consequence, the U(1) charges of U(4) gauge theory 
appear not to be confined in the low-temperature region as is the case with pure 
U(1) gauge theory [14, 15]. 

In fig. 10 we show the average action per plaquette (E), as a function of the 
inverse temperature on a 6 4 lattice, for pure SU(4) gauge theory. Our  results in 
fig. 10 are in good agreement with the leading-order high- and low-temperature 
expansions of eqs. (1) and (3), respectively. In fig, 11 we show some of the mixed 

phase  starting runs for the average action per plaquette in the neighborhood of 
the first-order phase transition of pure SU(4) gauge theory. This figure suggests a 
first-order phase transition at Bc = 10.2 + 0.2. The Wilson loops of size up to 3 x 3 
are shown in fig. 12 as well as the leading-order high-temperature expansion of 
eq. (1) for comparison. 

In figs. 13a, b we show the logarithmic ratios x ( L J ) ,  for (L J ) =  (1, 1), (2, 2), 
(3, 2) and (3, 3), for pure SU(4) gauge theory as a function of the inverse tem- 
perature B- We also show the leading-order high-temperature expansion of eq. (4) 
in fig. 13a. In fig. 13b we show the vicinity of the transition inverse temperature. 
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Fig. 8. The Wilson loops ff'(I, J) for the U(1) component of pure U(4) gauge theory on a 6 4 lattice as 
a function of the inverse temperature B. The full upward triangles represent (L 3) = (1, 1), the full circles 
represent (2, 1), the crosses represent (3, 1), the open circles represent (2, 2). The curves represent the 

leading-order high-temperature expansion of eq. (5). 

On these figures we show a band representing the weak-coupling 2-1oop per turba-  
tive behavior, with A0 = (4.5 ± 0.5) x 10 -3 x/K, where A0 is the asymptotic f reedom 
scale for the lattice cutoff and K is the physical string tension, as discussed in 
ref. [9]. 

Note that in fig. 13 the string tension appears  nearly continuous from the 
weak-coupling to the strong-coupling regimes. Although a first-order transition 
would indicate a discontinuity, the size of the jump is rather  small. SU(4) represents 
a borderline case, where the first-order transition present for large SU(N)  just 
appears. We believe that the mixed phase runs shown in fig. 11 indicate the reality 
of the transition, but note the expanded scale in that figure relative to that in the 
U(4) case shown in fig. 2. 

Our results are consistent with confinement of fundamental  charges for couplings 
on either side of the SU(4) phase transition. Indeed, as emphasized in ref. [2], the 
mere existence of a transition in a lattice gauge theory does not necessarily imply 
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a loss of confinement. As we have no order parameter distinguishing the two SU(4) 
phases, it is possible that a generalization of the Wilson action may permit a smooth 
continuation between them. 

In contrast, with the group U(4) we have the U(1) string tension to serve as an 
order parameter. This suggests that here the transition cannot be continued around 
without breaking the U(1) symmetry. It may, however, be possible to modify the 
action to convert the transition into a second-order one, as present in the pure 
U(1) theory. These questions are currently under investigation. 
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